Как узнать где фаза, а где ноль без индикатора, тестера и мультиметра

При монтаже розеток, выключателей, бытовых потребителей приходится сталкиваться с определением фазы и нуля в электропроводке. Если для электромонтажников с опытом эта задача не является проблемой, то у тех, кто впервые коснулся этого вопроса, возникает много непонятных моментов. Поэтому следует разобраться, как и чем можно выявить фазу и ноль в розетке, каково назначение жил электропроводки и можно ли обойтись без специального оснащения.

Понятия ноля и фазы

Электрическая энергия в жилой дом поступает от трансформаторной подстанции, основное назначение которой — преобразование высокого напряжения чаще всего в 380 В. К домам электроэнергия подземным или воздушным способом подводится на вводной распределительный щит. Затем напряжение подается к щиткам каждого подъезда. В квартиру от него заходит только одна фаза с нулем, т.е. 220 В и защитный проводник (зависит от конструкции электрической проводки).

Как узнать где фаза, а где ноль без индикатора, тестера и мультиметра

Таким образом, проводник, обеспечивающий подачу тока к потребителю, называется фазным. Внутри трансформатора обмотки соединены в звезду с общей точкой (нейтраль), заземленной на подстанции. К нагрузке она подводится отдельным проводом. Ноль, представляющий собой общий проводник, предназначен для обратного протекания тока к источнику электроэнергии. Кроме этого, нулевой провод выравнивает фазное напряжение, т.е. значение между нулем и фазой.

Заземление, которое часто называют просто землей, не подключается к напряжению. Его назначение — защита человека от воздействия электрического тока в момент возникновения неполадок с потребителем, т.е. при пробое на корпус. Это может происходить при повреждении изоляции проводников и касании поврежденного участка корпуса прибора. Но поскольку потребители заземляются, при возникновении опасного напряжения на корпусе заземление притягивает опасный потенциал к безопасному потенциалу земли.

По цвету провода

Узнать назначении жилы можно по цвету ее изоляции. Существует стандарт цветовой маркировки проводников. Нулевые провода принято обозначать голубым либо синим цветом. Заземление можно найти по зеленому цвету изоляционного материала. Впрочем, здесь допустимо использовать также желтую маркировку либо сочетание зеленого и желтого цветов.

С фазовым проводом дело обстоит труднее. Палитра оттенков его обозначения довольно широка:

  • белый;
  • черный;
  • красный;
  • коричневый;
  • серый;
  • оранжевый;
  • розовый;
  • фиолетовый цвет.

Встречаются фазы даже бирюзового цвета. В этом случае следует быть очень аккуратным, чтобы случайно не перепутать его с зеленым заземлением или с голубым нулем.

Строго говоря, определение по цвету изоляции — не самый надежный способ. Поэтому специалисты часто называют его условным. Во-первых, цветная маркировка встречается далеко не всегда, — например, в старых постройках использовали исключительно белый цвет изоляции для всех кабелей. Во-вторых, сами специалисты-электромонтажники часто пренебрегают установленными правилами маркировки, подсоединяя к системе те провода, которые оказались под рукой.

Как определить фазу и ноль индикаторной отверткой

Один из способов выявить, где фаза и ноль в розетке либо в силовом кабеле, — использовать индикаторную отвертку. Инструмент внешне напоминает отвертку, но внутри у него есть специальная начинка со светодиодом. Прежде чем приступить к измерениям, нужно отключить рубильник, через который напряжение подается в помещение. После этого требуется зачистить концы проверяемых проводов, для чего снимают 1,5 см изолирующего материала.

Во избежание короткого замыкания между проводами после включения автомата их следует направить в разные стороны. Когда все подготовительные мероприятия будут выполнены, необходимо включить автомат для подачи напряжения. Чтобы понять, как найти фазу и ноль, необходимо выполнить следующие действия:

  1. Отвертку зажимают между двумя пальцами — средним и большим, избегая касания оголенной части жала инструмента.
  2. Указательным пальцем касаются металлического наконечника с противоположной стороны отвертки.
  3. Плоским концом индикатора поочередно дотрагиваются до зачищенных проводников.
  4. При касании тестером фазы светодиод загорится. Второй провод будет соответствовать нулевому. При отсутствии индикации изначально проводник будет являться нулевым.

Как работают более сложные, активные индикаторные отвертки

Простейшие индикаторной отвертки используют контактный метод измерения, то есть, чтобы определить наличие напряжения надо обязательно прикасаться жалом к проводнику. Это достаточно удобно, но не решает большинства задач, с которыми сталкиваются электрики при поиске неисправностей в электрических сетях.

инструкция по эксплуатации индикаторной отвертки (кликните для увеличения)

Более совершенной модели индикаторных отверток могут работать бесконтактным способом – они реагируют на электромагнитное поле, которое возникает в любом проводнике при протекании сквозь него электрического тока. Устройство таких открыток гораздо сложнее — в них уже есть своя схема и отдельное питание. Большинство оснащены звуковой индикацией. Отдельной категорией идут индикаторные отвертки с ЖК экраном – такие модели могут даже показывать какое напряжение в измеряемой сети.

Принцип работы очень простой – в отвертке есть катушка и когда она попадает в поле вокруг проводника, то в ней появляется электрический ток, который заставляет светиться индикаторную лампу и звучать зуммер. Это свойство бесконтактных индикаторных отверток позволяет находить обрывы в проводке даже сквозь стену – без такого устройства пришлось бы полностью снимать обои и сбивать штукатурку везде, где проложен провод.

Перед тем, как пользоваться отверткой индикатором с возможностью бесконтактного определения наличия напряжения, надо не забывать включать их питание – чтобы не садилась батарейка, на них есть переключатель.

Как пользоваться как пользоваться такой индикаторной отверткой можно узнать просмотрев эту краткую видео-инструкцию:

Кроме индикаторных отверток существуют другие виды детекторов напряжения, узнать о которых вы можете прочитав эту статью.

Как определить фазу и ноль мультиметром

Прибор, которым измеряют напряжение, ток и сопротивление, называется мультиметром. Чтобы выявить фазный и нулевой провод с его помощью, сперва нужно настроить устройство, для чего выбирают необходимый предел измерений. В случае с цифровыми приборами устанавливают 600, 750 или 1000 «~V» или «ACV».

Определение фазы производится следующим образом: один из щупов прибора подключают к контакту розетки или кабеля, а до второго щупа дотрагиваются рукой. При отображении на дисплее значения около 200 В это будет указывать на наличие фазы. Показания могут отличаться, что зависит от отделки пола, обуви и т.п. Если прибор отображает нули либо напряжение в пределах 5-20 В, значит, контакт соответствует нолю.

Что может показывать индикаторная отвертка

Определение каких-либо неисправностей в электрической сети индикатором напряжения имеет смысл только в том случае, когда в квартире нет света, но электричество точно есть в других по подъезду. То же самое касается частных домов – первым делом надо узнать, есть ли свет у соседей.

Если проблема всё-таки в своей квартире, то чаще всего индикаторная отвертка показывает два диаметрально противоположных результата:

  • Фазы нет ни в одном из контактов розетки. Причин этому может быть очень много и большинство из них требуют вмешательства профессионалов. Своими силами можно только определить не перегорела ли пробка (чаще вместо нее установлен «автомат» – прибор автоматического отключения, при превышении номинальных значений силы тока в цепи). Для этого надо найти возле счетчика пробки и проверить тестером есть ли напряжение на контактах до и после нее. Если пробка перегорела, то ее надо менять, а если стоит автомат, то его могло выбить – на нем есть рычажок, который в рабочем положении повернут вверх (если устройство правильно установлено).
  • Фаза есть на всех контактах розеток. Практически со стопроцентной гарантией это значит что отгорел нулевой провод возле счетчика. Если нет навыка электромонтажных работ, то для решения проблемы надо приглашать электрика.

Как определить фазу и ноль без приборов

Иногда бывают ситуации, когда отвертки для определения фазы либо мультиметра под рукой нет, но нужно выяснить, какой провод чему соответствует. Поэтому следует ориентироваться по цветовой маркировке проводов силового кабеля. В отношении маркировки проводов существует стандарт IEC 60446-2004, которого должны придерживаться производители кабелей, а также электромонтажники, выполняющие подключение той или иной электроарматуры.

Чтобы определить по цвету провода, какому проводнику он соответствует, нужно придерживаться следующей маркировки:

  • синий или голубой — ноль;
  • коричневый — фаза;
  • заземление — зелено-желтый.

Однако фазный провод бывает не только коричневым. Часто встречаются и другие расцветки, например белая или черная, но она будет отличной от земли и нуля. Визуально определить провода можно в распределительной коробке, люстре и других точках запитки.

Есть еще один вариант, как определить, где фаза и ноль при отсутствии приборов. Для этого потребуется лампа накаливания с патроном и двумя небольшими отрезками проводов. После подсоединения проводников к патрону можно начинать работу. Краем одного провода касаются трубы отопительной системы, другим — проверяемых проводников. Если в момент контакта лампа зажигается, то это указывает на наличие фазы. Труба для проведения подобного мероприятия должна быть металлической, поскольку пластиковая не проводит ток.

Нужно учитывать, что этот способ хоть и позволяет выявить фазу и ноль, но является опасным, поскольку велика вероятность получить удар электрическим током. Поэтому более безопасно для рассматриваемых целей использовать неоновые лампочки.

Определение фазы и нуля различными способами

С использованием индикаторной отвертки

Это, пожалуй, самая простая и доступная методика. Как уже говорилось, стоимость простейшего прибора –весьма невысока. А научиться работать с ним – дело нескольких минут.

Итак, как устроена обычная индикаторная отвертка:

Устройство простейшей индикаторной отвертки

Вся «начинка» этого пробника собрана в полом корпусе (поз.1), изготовленного из диэлектрического материала.

Рабочим органом такой отвёртки является металлическое жало (поз.2), чаще всего – плоской формы. Чтобы снизить вероятность случайного контакта с расположенными рядом с тестируемым проводом другими токопроводящими деталями, оголенный конец жала обычно невелик. Жало иди короткое само по себе, иди «одевается» в изоляционную оболочку.

Важно – жало индикаторной отвертки следует рассматривать именно как контактный наконечник при проведении тестирования. Да, при необходимости им можно выполнить и простейшие монтажные операции, например, открутить винт, удерживающий крышку розетки или выключателя. Но регулярно использовать его именно в качестве отвертки – большая ошибка. И долго при такой эксплуатации прибор не проживет 0 он попросту не рассчитан на высокие нагрузки.

Металлический стержень жала, входящий в корпус, становится проводником, обеспечивающим контакт с внутренней схемой индикатора. А сама схема состоит, во-первых, из мощного резистора (поз.4) номиналом не менее 500 кОм. Его задача – снизить показатели силы тока при замыкании цепи до безопасных для человека значений.

Следующий элемент – неоновая лампочка (поз. 5), способная загораться при весьма небольших показателях протекающего через нее тока. Взаимный электрический контакт всех элементов схемы обеспечивает прижимная пружина (поз. 6). А она, в свою очередь, сжимается вкручивающейся в торцевую оконечность корпуса заглушкой (поз.7), которая может быть или полностью металлической, или имеющей металлическую «пятку». То есть эта заглушка при проведении проверок играет роль контактной площадки.

При прикосновении к контактной площадке пальцем пользователь «включается» в цепь. Тело человека, во-первых, само по себе обладает определенной проводимостью, а во-вторых, представляет собой очень большой «конденсатор».

На этом и основан принцип поиска фазы и нуля. Жалом индикаторной отвёртки касаются зачищенного проводника (клеммы розетки или выключателя, другой тонконесущей детали, например, контактного лепестка патрона для лампочки). Затем контактной площадки пробника касаются пальцем.

Проверка показывает, что индикаторная отвертка коснулась фазы

Если жало отвертки коснулось фазы, то при замыкании цепи напряжения достаточно, чтобы вызвать неопасный для человека ток, приводящий к свечению неоновой лампочки.

В то же случае, если проверка пришлась на нулевой контакт, свечения не возникнет. Да, там тоже бывает небольшой потенциал, особенно если в квартире (доме) в это время работают другие электрические приборы. Но ток благодаря резистору будет настолько мал, что свечения индикатора вызвать не должен.

Аналогично и на заземляющем проводнике – там, по сути, вообще не должно быть никакого потенциала.

В том же случае, если, скажем, в розетке два контакта показывают фазу – это повод искать причину такой серьезной неисправности. Но это уже тема для отдельного рассмотрения.

Несколько иначе выполняется проверка с индикаторной отверткой более усовершенствованного типа. Такие пробники позволяют не только определять фазу и ноль, но и проводить прозвонку цепей и ряд других операций.

Внешне такие отвёртки-индикаторы очень схожи с рассмотренными выше простейшими. Разница заключается лишь в том, что вместо неоновой лампочки используется светодиод. А в корпусе размещены элементы питания на 3 вольта, обеспечивающие функционирование схемы.

Небольшое дополнение в схеме расширяет функциональные возможности индикаторных отверток

Если нет уверенности в том, какая конкретно отвертка имеется в распоряжении пользователя, можно провести простейший тест. Просто одновременно касаются рукой и жала, и контактной площадки. Цепь при этом замкнется, и светодиод об этом просигналит своим свечением.

Простой тест, показывающий, какая индикаторная отвертка имеется в распоряжении домашнего мастера. Если индикатор загорелся (верхний фрагмент) – то это отвертка со встроенным питанием и функцией прозвона. Если нет – это обычная.

Для чего это все говорится? Да просто потому, что алгоритм определения фазы и нуля при пользовании такой отверткой несколько меняется. А конкретно – прикасаться к контактной площадке не требуется. Простое касание фазного проводника вызовет свечение индикатора. На рабочем нуле и на заземлении такого свечения не будет.

В наше время в продаже широко представлены и более дорогие индикаторные отвёртки, с электронной начинкой, световой и звуковой индикацией. А нередко – даже с цифровым жидкокристаллическим дисплеем, показывающим напряжение на тестируемом проводнике. То есть, по сути, отвертка-индикатор становится упрощенным подобием мультиметра.

Электронные индикаторные отвертки: слева — со световой и звуковой индикацией, справа — еще и с цифровым дисплеем

Пользоваться такими тоже не особо сложно. Руководствоваться придется прикладываемой к прибору инструкцией – в любом случае прибор должен однозначно указать на наличие напряжения на фазном проводе и отсутствие – на нулевом или заземляющем. Главное – убедиться до начала проверки, что возможности используемого прибора соответствуют напряжению в сети. Это обычно указывается непосредственно на корпусе индикатора.

Еще одним «родственником» индикаторных отверток является бесконтактный пробник напряжения. На его корпусе вообще полностью отсутствуют токопроводящие детали. А рабочая часть представляет собой вытянутый пластиковый «носик», который как раз и подводится к тестируемому проводнику (клемме).

Бесконтактный индикатор напряжения – способен «почувствовать» фазу даже через изоляцию.

Удобство такого прибора еще и в том, что вовсе не обязательно проводить зачистку проверяемого провода от изоляции. Прибор реагирует не на контакт, а на создаваемое проводником электромагнитное переменное поле. При определенной его напряжённости срабатывает схема, и прибор сигнализирует о том, что перед нами фазный провод, включением светового и звукового сигнала.

Определение фазы и нуля с помощью мультиметра

Еще одним контрольно-измерительным прибором, которым бы необходимо обзавестись любому мастеровитому хозяину дома, является мультиметр. Стоимость недорогих, но в достаточной степени функциональных моделей – в пределах 300÷500 рублей. И вполне можно один раз сделать такое приобретение – оно обязательно окажется востребованным.

Мультиметр обязательно должен стать одним из элементов инструментального «арсенала» хорошего хозяина дома или квартиры

Итак, как определить фазу с помощью мультиметра. Здесь могут быть различные варианты.

А. Если проводка включает три провода, то есть фазу, ноль и защитное заземление, но с цветовой маркировкой или нет ясности, или отсутствует уверенность в ее достоверности, то можно применить метод исключения.

Выполняется это следующим образом:

  • Мультиметр готовится к работе. Черный измерительный провод подключается к разъему СОМ, красный – к разъему для замера напряжения.
  • Переключатель режимов работы переводится в сектор, отведенный замерам переменного напряжения (~V или ACV), и стрелкой устанавливается на значение, превышающее напряжение в сети. В разных моделях это может быть, например, 500, 600 или 750 вольт.

Правильное положение измерительных проводов и переключателя режимов работы мультитестера

  • Далее, проводятся замеры напряжения между предварительно зачищенными проводниками. Всего комбинаций в данном случае может оказаться три:
  1. Между фазой и нулем напряжение должно быть близким к номиналу в 220 вольт.
  2. Между фазой и заземлением может быть такая же картина. Но, правда, если линия оснащена системой защиты от утечек тока (устройством защитного отключения — УЗО), то защита вполне может при этом сработать. Если УЗО нет, или ток утечки получается совсем незначительный, то напряжение, опять же, в районе номинала.
  3. Между нулем и заземлением напряжения быть не должно.

Вот как раз последний вариант покажет, что провод, не участвующий в этом замере, и является фазным.

Определение фазного проводника из группы трех проводов с помощью мультиметра методом исключения

После проверки необходимо выключить напряжение, заизолировать зачищенные концы проводов и произвести маркировку. Например, наклеив полоски белого лейкопластыря и сделав на них соответствующие надписи.

Б. Можно проверить провод (контакт в розетке) и непосредственным примером напряжения на нем. Выполняется это так:

  • Подготовка мультиметра к работе – по той же схеме, что показывалась выше.
  • Далее, проводится контрольный замер напряжения. Здесь преследуются сразу две цели. Во-первых, необходимо убедиться, что обрыва в линии нет, и мы не будем искать фазу и ноль, что говорится, на пустом месте. А во-вторых, тестируется и сам прибор. Если показания корректные, значит – переключение выполнено правильно, и в цепь включён мощный резистор, который обеспечит должный уровень безопасности последующим операциям.
  • Красным измерительным проводом касаются тестируемого проводника. Если это розетка, то в гнездо вставляется щуп, если зачищенный конец проводника – лучше воспользоваться зажимом-«крокодильчиком».
  • Второго щупа касаются пальцем правой руки. И — наблюдают за показаниями на дисплее мультиметра.

— Если контрольный щуп был установлен на ноль, напряжение показываться не будет. Или же его значение будет крайне невелико — измеряемое единицами вольт.

Контрольный измерительный провод мультитестера попал на ноль – напряжения или нет вовсе, или оно крайне незначительно.

— В том же случае, когда контрольный провод оказался на фазе, индикатор покажет напряжение в несколько десятков, а то и более вольт. Конкретное значение не столь важно – оно зависит от очень большого количества факторов. Это и установленный предел измерений используемой модели мультитестера, и особенности сопротивления тела конкретного человека, и влажность, и температура воздуха, и обувь, в которую обут мастер и т.п. Главное – напряжение есть, и оно разительно отличается от второго контакта. То есть – фаза отыскана.

А вот такие показания дают ясно понять, что отыскана фаза

Наверное, не все смогут преодолеть психологический рубеж – коснуться рукой щупа, когда мультитестер подключен к розетке. Бояться-то здесь особо нечего – мы предварительно протестировали прибор замером напряжения. И ток, идущий сейчас через него при замыкании цепи – немногим отличается от того, что проходит через индикаторную отвертку. Но тем не менее – для некоторых такое прикосновение становится прихологически невозможным.

Ничего страшного, можно поступить и несколько иначе. Например, просто коснуться вторым щупом стены – штукатурки или даже обоев. Какая-никакая влажность все же есть, и это позволит замкнуть цепь. Правда, показания на индикаторе будут, скорее всего, значительно меньше. Но и таких будет достаточно, чтобы однозначно разобраться, какой же из контактов является фазным.

Вторым «контактом» может стать просто стена, расположенная около места проведения проверки.

Ничуть не хуже будет подобная проверка, если в качестве второго контакта будет задействован какой-либо заземленный прибор или предмет, например, радиатор отопления или водопроводная труба. Подойдет и металлический каркас, даже не имеющий заземления. А иногда даже один подключенный к розетке щуп при втором, просто лежащем на полу или на столе, позволяет увидеть разницу. При тестировании фазы тестер может показать единицы или пару десятков вольт. При нулевом проводнике, естественно, будет ноль.

В. С определением фазы, как видите, особых проблем нет. Но как быть в том случае, если проводов три. То есть с фазой определились, и теперь надо выяснить, какой из двух оставшихся является нулем, а какой – защитным заземлением.

А вот это – не столь просто. Есть, конечно, несколько доступных способов. Но ни один из них не может претендовать на «истину в последней инстанции». То есть здесь требуются особые приборы, которые имеются в распоряжении профессионалов электриков.

Но иногда помогают и самостоятельные тестирования.

Про одно из них уже говорилось выше. Когда замеряется напряжение между фазой и нулем, никаких особенностей это вызывать не должно. Но при замере между фазой и землей из-за неизбежной утечки тока возможно срабатывания системы защиты – УЗО.

Даже небольшой ток утечки при измерении напряжения между фазой и защитным заземлением может привести к срабатыванию УЗО

Другой способ выявления нуля и защитного заземления – прозвон. То есть можно попытаться, переключив мультиметр на измерение сопротивления в диапазоне, скажем, до 200 Ом и, в обязательном порядке – отключив напряжение на щите, промерить поочередно сопротивление между этими проводниками и гарантированно заземленным объектом. На проводнике РЕ это сопротивление по идее должно быть значительно ниже.

Но, опять же, способ этот не отличается достоверностью, так как соединения практикуются разные, и значения могут получиться примерно одинаковыми, то есть ни о чем не говорящими.

Шина заземления в распределительном щите

Еще один вариант – можно отключить шину заземления от подводящего к ней контура. Или же снять с нее предполагаемый провод, подлежащий проверке. Затем – или выполнить прозвон, или провести поочередный промер напряжения между фазой и оставшимися двумя проводниками. Результаты часто позволяют судить о том, где ноль, а где РЕ.

Но, сказать по правде, этот способ не кажется ни действенным, ни безопасным. Опять же, по причине различных нюансов прокладки проводки и коммутации на распределительных щитах, результат может получиться не вполне достоверным.

Узнайте, как пользоваться мегаомметром, а также ознакомьтесь с его назначением и приемами работы с видео прибором, из нашей новой статьи на нашем портале.

Так что если нужна гарантированная ясность, где же ноль и где заземление, а самому выяснить не представляется возможным, лучше обратиться квалифицированному электрику. При всей схожести этих проводников в домашней проводке путать их ни в коем случае нельзя.

* * * * * * *

Итак, были рассмотрены основные доступные способы определения фазы и нуля. Еще раз подчеркнём – если визуальный способ определения (по цветовой маркировке изоляции) не гарантирует достоверности информации, то все остальные должны проводиться исключительно с использованием специальных приборов. Никакие «100% методики» со всяческими картошками, пластиковыми бутылками, банками с водой и иными «игрушками» – совершенно недопустимы!

Кстати, в публикации ничего не говорится и об использовании так называемой «контрольки» — лампочки в патроне с двумя проводниками. Опять же – это потому что такие тестирования напрямую запрещены действующими правилами безопасной эксплуатации электроустановок. Не рискуйте сами и не создавайте потенциальной угрозы своим близким!

В завершение публикации – небольшой видеосюжет, посвященный проблеме поиска фазы и нуля.

Проверка исправности ламп накаливания

При покупке очередной лампочки накаливания важно проверить ее работоспособность прямо в магазине. Если нет соответствующего стенда, сделать это можно при помощи обыкновенной индикаторной отвертки. Для этого нужно взять лампу одной рукой за металлический цоколь, а щупом индикаторной отвертки в другой руке прикоснуться к центральному контакту на лампочке. Если она исправна, то светодиод на приборе загорится.

Несмотря на то, что способ действенный, в результате может быть сбой, если лампочка разгерметизирована. В таком случае электрическая цепь сохраняется, но лампа все равно не загорится. Однако такое случается довольно редко.

Принцип работы

Как работает индикаторная отвертка? Внешний вид прибора схож с обыкновенной отверткой, однако он имеет встроенный в полость ручки индикатор. Металлическая часть отвертки выполняет роль щупа, при этом он способен сокращать силу подаваемого электричества, чтобы использование прибора было максимально безопасным. Также прибор имеет светодиод, который располагается в верхней части ручки. Кроме этого, отвертка имеет металлическую пластину контактного типа.

Принцип работы довольно прост — щуп отвертки касается проводника электричества, затем, проходя по нему, сила тока значительно уменьшается, после чего человек прикасается пальцем к контактной пластине. Происходит замыкание цепи, отчего загорается лампочка. Отвертка необходима для того, чтобы показать наличие в сети постоянного или переменного тока.

Картошка это не только еда

В случае если под рукой не оказалось никаких приборов, есть один народный метод: использование картофелины. Воспользовавшиеся этим простым способом делятся своим опытом:

  1. Понадобится крупная сырая картофелина;
  2. Резистор (номиналом которого минимум 1Мом);
  3. Два провода.

Первый проводок втыкается одним концом в картошку, другой его конец подсоединяется к металлу (к отоплению или водопроводу). Второй провод втыкается в срез овоща на большом расстоянии от первого, а другой конец через резистор касается проверяемого провода. После этого следует подождать несколько минут, если реакция проявилась — значит это фаза.

Чтобы определить фазу или нуль можно воспользоваться любым из перечисленных способов — главное, всегда быть осторожным при работе с током и соблюдать правила безопасности (при работе рекомендуется использовать защитные перчатки из резины).

По цветовой маркировке проводов

Иногда специальный тестер может и не понадобиться. Например, если каждая жила обмотана изоляционной лентой определенного цвета. В таком случае определить назначение проводов можно с помощью специальной таблицы маркировки.

Как видно из рисунка, синим цветом отмечается нейтральный рабочий элемент, а желто-зеленым – заземление.

Для чего искать фазу

Казалось бы, чего проще — установить выключатель лампочки. Разрывай любой провод, ставь на него рубильник — и свет будет послушен воле человека. Тем не менее, по действующим Правилам установки электрооборудования — ПУЭ — выключатель должен ставится исключительно в разрыв фазного провода. Это вполне логично — разомкнув цепь мы должны обезопасить себя или другого человека от поражения током, если надо будет поменять патрон или весь светильник, даже лампочку. Разумеется, при замене светильника, в первую очередь монтажник или домашний мастер проверяет наличие фазы. И, если уж поставить выключатель правильно нет возможности, придётся отключать автомат в щитке, чтобы гарантировано обесточить проводники для лампы. Всегда проверяйте наличие фазы в том оборудовании, которое собираетесь ремонтировать или менять.

Проверка нагревательного ТЭНа

Проверить работоспособность нагревательного элемента стиральной машины можно, даже не вынимая его. Достаточно обеспечить доступ к контактам, остальные провода при этом нужно отсоединить. Для проверки нужно прикоснуться рукой к одному из контактов ТЭНа, щупом отвертки — к другому. При этом цепь замыкается прикосновением к металлической пластине на устройстве. Если лампа загорится, то нагревательный элемент исправен.

Поделиться:

Share on facebook
Share on twitter
Share on pinterest
Share on linkedin
Share on vk
Share on whatsapp

Оставить комментарий

Ваш email нигде не будет показанОбязательные для заполнения поля помечены *

*

Популярные статьи:

Май 2022
Пн Вт Ср Чт Пт Сб Вс
 1
2345678
9101112131415
16171819202122
23242526272829
3031  

Категории:

Для авторов
Возможно многие из Вас обладают хорошими знаниями в сфере строительства и ремонта.

Мы предлагаем Вам заработать на своих знаниях получать дополнительный доход.

Что от Вас требуется:

  1. умение писать уникальные статьи;
  2. отличное знание русского языка;
  3. наличие свободного времени;
  4. желание.

Подробности здесь...
Посетители сайта
1 посетитель просматривают эту страницу.
Пользователей: 1 робот

Сейчас читают:

Если вы хотите получать уведомления на свой E-mail о появлении новых статей, то рекомендуем вам чуть ниже ввести свой электронный почтовый адрес.